

Fab Valve

NPS ½ to NPS 6 (DN15 to DN150) -58° F/ -50° C to 1100° F/593° C

Class 150, 300 and 600

Extremely Fast Delivery (Including Exotic Materials)

what makes this valve different ?

Use ASME B16.34 Code to calculate the minimum wall thickness requirements

Use ASME B16.34 Code to calculate the minimum bolting requirements

Combine the two ASME Code requirements into one common part

ASME minimum wall thickness requirements (red)

ASME minimum bolting requirements (pink)

Only wetted areas need to be corrosion resistant

Therefore, only the wetted areas need to be expensive material

PATENTED DESIGN

Our patented design separates the two requirements of ASME B16.34

CORE COMPONENTS (MADE TO ORDER)

Designed to meet minimum wall thickness requirements

PATENTED DESIGN

Our patented design separates the two requirements of ASME B16.34

CORE COMPONENTS (MADE TO ORDER)

BOLTING CONTAINMENT (STOCK PARTS)

SUITABLE MATERIAL FOR PROCESS

MORE EXPENSIVE MATERIAL

Designed to meet minimum bolting requirements

PATENTED DESIGN

Our patented design separates the two requirements of ASME B16.34

CORE COMPONENTS (MADE TO ORDER)

BOLTING CONTAINMENT (STOCK PARTS)

ALWAYS WC6 (F11)

SUITABLE MATERIAL FOR PROCESS

MORE EXPENSIVE MATERIAL

PAINTED TO RESIST EXTERNAL ENVIRONMENT/GALVANIC CORROSIO

INEXPENSIVE TO MANUFACTURE

Common body/bonnet plate for Class 150, 300 and 600

CLASS 150/ 300

CLASS 600

6pcs, 3/8" through holes (NPS 2 Valve)

4pcs, 5/8" through holes (NPS 2 Valve)

Horseshoe Plates have dual bolting patterns

3/8" through holes (red)

Horseshoe Plates have dual bolting patterns

3/8" through holes (red) 5/8" through holes (blue)

Horseshoe plates are the same for both single and dual packing configurations

Common internals for Class 150, 300 and 600

BASED ON CLASS 600 SHAFT DIAMETER

Common internals for Class 150, 300 and 600

SAME AS OUR M-CLASS LINE

Only four components are manufactured for each application

BODY

FLANGES

BONNET

(Single/Dual Packing Bonnet)

MOSTLY LATHE WORK MINIMAL MILLING WORK MOSTLY LATHE WORK MINIMAL MILLING WORK

LATHE WORK ONLY

All bolting containment components are common (Class 150, 300, and 600)

GOSCO stocks all bolting containment components

All internal components are common (Class 150, 300, 600 and M-CLASS)

GOSCO stocks all internal components

GOSCO ONLY manufactures four core components for any valve configuration

COMPETITIVE PRICING

FAST DELIVERY

Superior Trim Hardening

FAB VALVE FABRICATED METAL SEATED BALL VALVES

"HARD ASS"

Superior Trim Hardening

Seat/Spring Design

FEATURES

Superior Trim Hardening Seat/Spring Design Arcuate Cut or Vari V Ball

FAB VALVE FABRICATED METAL SEATED BALL VALVES

"SLOW POKE / CONTROL FREAK"

FEATURES

Superior Trim Hardening Seat/Spring Design Arcuate Cut or Vari V Ball Dual Shaft Packing

FAB VALVE FABRICATED METAL SEATED BALL VALVES

"BACK UP PLAN"
FAB VALVE

FEATURES

Superior Trim Hardening Seat/Spring Design Arcuate Cut or Vari V Ball Dual Shaft Packing Bi-directional Sealing

FAB VALVE FABRICATED METAL SEATED BALL VALVES

UNBIASED OPINION

SUPERIOR TRIM HARDENING

COMPETITION – HVOF HIGH VELOCITY OXYGEN FUEL

Uneven coating (line of sight) Cracks / spalls Coating is porous Internal bore of ball can not be coated

FAB VALVE FABRICATED METAL SEATED BALL VALVES

"NOT ALL IT'S CRACKED UP TO BE"

BORONIZING

Proprietary Gosco Process

Thermo-chemical surface hardening process

Boron atoms are diffused into the surface

Results in a case layer that is extremely hard, corrosion resistant, and capable of handling high temperature shocks

Inconel 718, 200x magnification .0035" solid layer, .007" partial layer

BORONIZING

STARTS WITH THE BASE MATERIAL

Inconel 718 is the best material for severe service applications

Designed for high temperature applications

Extremely hard

Very corrosion resistant

Has a high nickel content to eliminate stress corrosion cracking

THEN - IT'S ALL ABOUT PREPARATION OF THE PARTS

There are 6 steps before the trim sets are sent to be borided:

- 1. Rough machining
- 2. Stress relieving
- 3. Finish machining
- 4. Grinding
- 5. Four levels of lapping
- 6. Vacuum testing

LAST – IT'S ALL ABOUT THE BORONIZING PROCESS

- 1. Cleaned to eliminate any residue
- 2. Boronized using our proprietary boronizing process
- 3. Finished lapped
- 4. Vacuum tested

COMPETITOR ON COATINGS

APPLICATION NOTE ON COATINGS Common Coatings

Method of Application	HVOF		Fusion	Plasma	Diffused		Patented
Material	Chromium Carbide	Tungsten Carbide	Chromium Carbide	Chromuim Oxide	Nitride	Boride	Nano Titanium Dioxide
Uses	General Severe Service, Power, Slurry Mining, Chemical	Specialized Severe Service, Mining, Food Processing, Corrosive Chemical	Specialized Severe Service, Power, Thermal Shock, Extreme Temperature	Corrosive Service, Gold Mining	General Service, Bearings, Hot Gas	Specialized Severe Service, Power Corrosive Services, Thermal Shock	Corrosive Service, Gold Mining, Nickel Mining, High Pressure Acid Leach
Base Metals	Any	Any	300 Series Stainless Nickel Alloys	Any, Duplex SS & Ti Typical	Iron-Based Alloys	Nickel-Based Alloys	Any, Duplex SS & Ti Typical
Advantages	High Strain to Fracture, Erosion- Resistant, Extreme Temperature	Erosion- Resistant, Wear- Resistant	Erosion- Resistant, Non-Porous, Thermal Shock, Metallurgical Bond, Corrosion Resistant	Very Corrosion Resistant at lower temperatures	Inexpensive Metallurgical Bond	Extremely Hard, Metallurgical Bond, Non- Porous, Corrosion Resistant	Very Corrosion Resistant at low and high temperatures, superior wear to conventional ceramic coatings
Disadvantages	Some Porosity, Mechanical Bond	Some Porosity, Mechanical Bond, Thermal Cycling Can Produce Cracking	Not Suitable on 410 SS 17-4PH Carbon Steel, Expensive	Poor Thermal Shock, Poor Bond Strength, Porosity, & Cracking are Typical	Reduces Corrosion Resistance, Lower Abrasion & Wear Resistance than HVOF Coatings	Very Thin .001" Finished, Bore Size Limit 1.5"	Ceramic coatings are not as tough as HVOF cermets

 Mages
 Some Perosity, Mechanical
 Some Perosity, Mechanical
 Mot Suitable on 410 SS 17–4PH
 Root Thermal
 Reduces
 Wery Thin .001*
 Ceramic

 Bond
 Bond, Thermal
 410 SS 17–4PH
 Shock, Poor
 Corrosion
 Finished, Bore
 coatings are not as tough as Produce

 Cycling Can
 Expensive
 Porosity, & Cracking are
 Lower Abrasion
 Size Limit 1.5*
 not as tough as not as tough as Cracking are

 Cracking
 Cracking are
 S.Wear
 MoF Cermets

 Typical
 Resistance than
 HVOF Coatings

FABRICATED METAL SEATED BALL VALVES

FAB VALVE

COMPETITOR ON COATINGS

Method of Application	HMCF						
Material	Chromium Carbide	Tungsten Carbide					
Uses	General Severe Service, Power, Surry Mining,	Specialized Severe Service, Mining, Food					
	Chemical	Corrosive Chemical	L	Plasma	Diffused		Patented
				Chromuim Oxide	Nitride	Boride	Nano Titanium Dioxide
Base Metals	Any	Any	a, al e	Corrosive Service, Gold Mining	General Service, Bearings, Hot Gas	Specialized Severe Service, Power Corrosive Services, Thermal Shock	Corrosive Service, Gold Mining, Nickel Mining, High Pressure Acid
Advantages	High Strain to Fracture, Erosion- Resistant, Extreme Temperature	Erosion- Resistant, Wear-	al	Any, Duplex SS & Ti Typical	Iron-Based Alloys	Nickel-Based Alloys	Any, Duplex SS & Ti Typical
		T COIGICITE		Very Corrosion Resistant at lower temperatures	Inexpensive Metallurgical Bond	Extremely Hard, Metallurgical Bond, Non- Porous, Corrosion Resistant	Very Corrosion Resistant at low and high temperatures, superior wear to conventional ceramic coatings
Disadvantages	Some Porosity, Mechanical Bond	Some Porosity, Mechanical Bond, Thermal Cycling Can Produce Cracking	n	Poor Thermal Shock, Poor Bond Strength, Porosity, & Cracking are Typical	Reduces Corrosion Resistance, Lower Abrasion & Wear Resistance than HVOF Coatings	Very Thin .001" Finished, Bore Size Limit 1.5"	Ceramic coatings are not as tough as HVOF cermets
		5		Typical	Resistance than HVOF Coatings		
		averades average		Ceseblar are	6 WORLDING		

FAB VALVE FABRICATED METAL SEATED BALL VALVES

COMPETITOR ON COATINGS

			_			
Method of Application	HVOF	HMOF		Method of Application	Diffused	
Material	Chromium Carbide	Tungsten Carbide		Material	Nitride	Boride
Uses	General Severe Service, Power, Surry Mining, Chemical	Specialized Severe Service, Mining, Food Processing, Corrosive Chemical	Plas	Uses	General Service, Bearings, Hot Gas	Specialized Severe Service, Power Corrosive Services, Thermal Shock
Base Metals	Any	Any	al Mini	Base Metals	Iron-Based Alloys	Nickel-Based Alloys
Achantages	High Strain to Fracture, Erosion- Resistant, Extreme Temperature	Erosion- Resistant, Wear- Resistant	el Any, & Ti Very Resi: at lo k, tem	Advantages	Inexpensive Metallurgical Bond	Extremely Hard, Metallurgical Bond, Non- Porous, Corrosion Resistant
Disadvantages	Some Porosity, Mechanical Bond	Some Porosity, Mechanical Bond, Thermal Cycling Can Produce Cracking	n Poor Shor Bon Porc Crac Typi	Disadvantages	Reduces Corrosion Resistance, Lower Abrasion & Wear Resistance than HVOF Coatings	Very Thin .001" Finished, Bore Size Limit 1.5"

GOSCO' S PROPRIETARY BORONIZING PROCESS

0.003" to 0.005" depth No size limit All the advantages, no disadvantages

FAB VALVE FABRICATED METAL SEATED BALL VALVES

SEAT DESIGN

FAB VALVE FABRICATED METAL SEATED BALL VALVES

"SMOOTH OPERATOR"

Belleville spring

FAB VALVE FABRICATED METAL SEATED BALL VALVES

Valve locks up (Floating ball design)

FAB VALVE FABRICATED METAL SEATED BALL VALVES

FAB VALVE FABRICATED METAL SEATED BALL VALVES

Graphite wedge seal and compression ring (Secured in the valve flange)

FAB VALVE FABRICATED METAL SEATED BALL VALVES

Nested wave spring (Downstream of wedge seal)

FAB VALVE FABRICATED METAL SEATED BALL VALVES

Media can get in to the spring cavity, but also escapes just as easily

Media flows freely around the springs

"SMOOTH OPERATOR"

GOSCO'S SEATS

COMPETITOR'S SEATS

Media flows freely around the springs

"SMOOTH OPERATOR"

Media compacts around the Bellevilles

"ALL PLUGGED UP"

Wave Spring provides "Live-load" on the seat assembly

Compression Ring for API 607 fire-safe applications

Spring loaded Outer Seal provides sealing on the seat assembly circumference

Inner Carrier encapsulates the seat insert on the inner circumference

Seat Insert seals against the ball

Outer Carrier encapsulates seat insert on the outer circumference

Proprietary Gosco Design Live-loaded for sealing at low pressures Utilized in high temperatures and/or pressures Encapsulates "Soft" insert on all 4 sides

Encapsulates "Soft" insert on all 4 sides

"Soft" insert can be different materials depending on the application

FAB VALVE FABRICATED METAL SEATED BALL VALVES

FAB VALVE FABRICATED METAL SEATED BALL VALVES

BALL DESIGN

"SLOW POKE"

GOSCO'S ARCUATE CUT BALL

Specific profile is cut on the ball to reduce velocities

GOSCO'S ARCUATE CUT BALL

Arcuate cut is then hardened in the boronizing process

GOSCO'S ARCUATE CUT BALL

Both sides of ball have an arcuate cut (not visible in image)

"SLOW POKE"

STANDARD BALL vs ARCUATE CUT

Illustration below shows a ball at 10% open.

STANDARD BALL (Competition)

ARCUATE CUT BALL (Gosco Valves)

Small opening High velocities Trim damage

3 times larger opening Velocities reduced by 2/3 Less trim damage (Flow is spread out)

GOSCO VARI-V BALLS

CONVENTIONAL BALL

Very bad control on the low end Flow is directed to the side of the pipe

"OUT OF CONTROL"

GOSCO VARI-V BALL

Excellent control through full range Flow is spread out evenly

FAB VALVE FABRICATED METAL SEATED BALL VALVES

"CONTROL FREAK"

CUSTOM VARI-V BALLS

GOSCO can custom design any profile for your application

CUSTOM V-BALL CV CURVE

CUSTOM V-BALL CV CURVE

"CONTROL FREAK"

SHAFT PACKING

"THE BUCK STOPS HERE"

6

A STATE OF STATE OF STATE

"THE BUCK STOPS HERE"

Our PREMIUM version uses a dual packing design for shaft sealing

Live loaded upper packing

"THE BUCK STOPS HERE"

FABRICATED METAL SEATED BALL VALVES

FAB VALVE

Our PREMIUM version uses a dual packing design for shaft sealing

SmartPak[™] lower packing

"THE BUCK STOPS HERE"

FABRICATED METAL SEATED BALL VALVES

FAB VALVE

Our PREMIUM version uses a dual packing design for shaft sealing

Dual shaft guides

ALLOY OPTIONS

NUMBER OF

CUSTOMER SPECIFIED

COMPETITOR' S VALVE

COMPETITOR' S VALVE

COMPETITOR' S VALVE

COMPETITOR'S VALVE (UNI-DIRECTIONAL SEALING)

COMPETITOR'S VALVE (UNI-DIRECTIONAL SEALING)

With upstream flow

"ONE WAY STREET"

COMPETITOR'S VALVE (UNI–DIRECTIONAL SEALING)

Seal is created between the downstream seat and ball

"ONE WAY STREET"

COMPETITOR'S VALVE (UNI–DIRECTIONAL SEALING)

Spring is still exerting force on the upstream seat

"ONE WAY STREET"

COMPETITOR'S VALVE (UNI–DIRECTIONAL SEALING)

However, with back-pressure or reverse flow, the valve fails

COMPETITOR'S VALVE (UNI–DIRECTIONAL SEALING)

Back-pressure pushes the ball back and flattens the spring

COMPETITOR'S VALVE (UNI–DIRECTIONAL SEALING)

Back-pressure pushes the ball back and flattens the spring

"ONE WAY STREET"

COMPETITOR'S VALVE (UNI–DIRECTIONAL SEALING)

A gap is created between the ball and seats

COMPETITOR'S VALVE (UNI–DIRECTIONAL SEALING)

Valve leaks past the seats

BI-DIRECTIONAL SEALING

Valve can withstand pressure from upstream or downstream

"UNBIASED OPINION

BI-DIRECTIONAL SEALING

Valve design is completely symmetrical, and seals bubble tight in both directions

Seals with full differential pressure Seals with 1 psi differential pressure

FAST TRACK

Expedited machining/assembly/shipping Fee is based on costs incurred Not on time? No Fast Track charge

SATISFIED CUSTOMERS

noranda

=

The miracles of science[•]

OTHER VALVES (M-CLASS/S-CLASS)

ON/OFF

VARI-V CONTROL

CRYOGENIC

3-WAY DIVERTER/ 3-WAY

BLOCK & BLEED

CUSTOM

Fab Valve

NPS ½ to NPS 6 (DN15 to DN150) -58° F/ -50° C to 1100° F/593° C

Class 150, 300 and 600

Extremely Fast Delivery (Including Exotic Materials)

